Singapore Institute of Technology
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Singapore Institute of Technology and we can't guarantee its availability, quality, security or accept any liability.

A Semantics-aware Method for Adding 3D Window Details to Textured LoD2 CityGML Models

conference contribution
posted on 2023-10-09, 04:12 authored by Xingzi Zhang, Kan ChenKan Chen, Henry Johan, Marius Erdt

3D window details for buildings are important in many 3D simulation and visualization applications. However, they are not easy to acquire or reconstruct. Thus, many 3D city models have no 3D windows, but only 2D planar textures for their façades (i.e., textured LoD2 CityGML models). Many procedural methods have been proposed to generate 3D façade details from images. However, they usually require tedious efforts to create a procedural grammar to achieve desired results, and lack consideration of window semantics which is a useful building property. In this paper, we propose a novel semantics-aware method for adding 3D window details to textured LoD2 CityGML models. We propose a two-level deep learning-based windowpane detection followed by processing and adjusting the detection results then generating and adding 3D windows to the building models. Different from existing methods, we focus on adding window details considering the semantics (i.e., frames and panes). Moreover, our method does not require tedious reconstruction or grammar creation efforts. It extracts the information present in the texture itself only, finds and adjusts the patterns and shapes from the detection results in an unsupervised and efficient manner to achieve neat window parsing results. Specifically, we propose clustering-based window/pane alignment, neatnessbased window image voting, grid-based symmetry and thickness filtering, and fitting-based window-top modeling. Experiments on representative 3D city datasets and illustrative applications demonstrate the effectiveness and usefulness of our method.

History

Journal/Conference/Book title

2022 International Conference on Cyberworlds (CW), 27-29 September 2022, Kanazawa, Japan.

Publication date

2022-11-07

Version

  • Published

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC