An Ensemble of Deep Learning Frameworks for Predicting Respiratory Anomalies
This paper evaluates a range of deep learning frameworks for detecting respiratory anomalies from input audio. Audio recordings of respiratory cycles collected from patients are transformed into time-frequency spectrograms to serve as front-end two-dimensional features. Cropped spectrogram segments are then used to train a range of back-end deep learning networks to classify respiratory cycles into predefined medically-relevant categories. A set of those trained high-performance deep learning frameworks are then fused to obtain the best score. Our experiments on the ICBHI benchmark dataset achieve the highest ICBHI score to date of 57.3%. This is derived from a late fusion of inception based and transfer learning based deep learning frameworks, easily outperforming other state-of-the-art systems. Clinical relevance--- Respiratory disease, wheeze, crackle, inception, convolutional neural network, transfer learning.
History
Journal/Conference/Book title
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)Publication date
2022-07-11Version
- Published