Singapore Institute of Technology
Browse
- No file added yet -

Cloud-based Data Analytics Framework for Real-time Lift Monitoring and Diagnostic System

Download (440.11 kB)
conference contribution
posted on 2023-09-30, 09:59 authored by Duc-Minh Pham, Van Tung Tran, Vedisha Vasudha Roopun, Junhong ZhouJunhong Zhou, Fei Long

In this paper, we present an intelligent real-time lift safety monitoring system, incorporating Artificial Intelligence (AI) analytics for early fault detection and diagnosis, to improve labor productivity and benefit the society through digital transformation. We have analyzed historical data, find most frequent faults, select sensors that can give early signals that the fault can happen. To build the real time analysis, cloud architecture is used as the framework for implementation. To conduct the research, we collect data and build models in experiments of lift model and in real lift. Selected sensors are tested in lift model before being installed on site in real lift. Simulation data from lift model are collected to build initial model. Based on the functions of lift models, we simulated some experiments such as slow operation of lift, abnormal stops between floors, lift operation with weight in lift cabin. For data collected from real lift in operation, we build unsupervised machine learning model to detect slow moving and stoppage between two floors. In addition, from collected lift event data, we also can find outliers of door opening and closing behavior that can be early signal for abnormal door operation.

History

Journal/Conference/Book title

Proceedings of the 9th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2022)

Publication date

2022-11-16

Version

  • Published

Rights statement

©2022 ASPEN 2022 Organisers. ISBN: 978-981-18-6021-8.All rights reserved.

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC