Cross-Modal Audio-Visual Co-learning for Text-independent Speaker Verification
Visual speech (i.e., lip motion) is highly related to auditory speech due to the co-occurrence and synchronization in speech production. This paper investigates this correlation and proposes a crossmodal speech co-learning paradigm. The primary motivation of our cross-modal co-learning method is modeling one modality aided by exploiting knowledge from another modality. Specifically, two cross-modal boosters are introduced based on an audio-visual pseudo-siamese structure to learn the modality-transformed correlation. Inside each booster, a max-feature-map embedded Transformer variant is proposed for modality alignment and enhanced feature generation. The network is co-learned both from scratch and with pretrained models. Experimental results on the LRSLip3, GridLip, LomGridLip, and VoxLip datasets demonstrate that our proposed method achieves 60% and 20% average relative performance improvement over independently trained audio-only/visual-only and baseline fusion systems, respectively.
History
Journal/Conference/Book title
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 04-10 June 2023, Rhodes Island, Greece.Publication date
2023-05-05Version
- Pre-print