Singapore Institute of Technology
Browse
- No file added yet -

Demystify Adult Learning: A Social Network and Large Language Model Assisted Approach

Download (1.43 MB)
conference contribution
posted on 2024-09-27, 02:38 authored by Fang Liu, Bosheng Ding, Chong Guan, Wei ZhangWei Zhang, Dusit Niyato, Justina Tan

Adult learning is increasingly recognized as a crucial way for personal development and societal progress. It however is challenging, and adult learners face unique challenges such as balancing education with other life responsibilities. Collecting feedback from adult learners is effective in understanding their concerns and improving learning experiences, and social networks provide a rich source of real-time sentiment data from adult learners. Machine learning technologies especially large language models (LLMs) perform well in automating sentiment analysis. However, none of such models is specialized for adult learning with accurate sentiment understanding. In this paper, we present A-Learn, which enhances adult learning sentiment analysis by customizing existing general-purpose LLMs with domain-specific datasets for adult learning. We collect adult learners’ comments from social networks and label the sentiment of each comment with an existing LLM to form labelled datasets tailored for adult learning. The datasets are used to customize A-Learn from several base LLMs. We conducted experimental studies and the results reveal A-Learn’s competitive sentiment analysis performance, achieving up to 91.3% accuracy with 20% improvement over the base LLM. A-Learn is also employed for word cloud analysis to identify key concerns of adult learners. The research outcome of this study highlights the importance of applying machine learning with educational expertise for teaching improvement and educational innovations that benefit adult learning and adult learners.

History

Journal/Conference/Book title

2024 IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT), 24-26 July 2024, Melbourne, Australia.

Publication date

2024-07-24

Rights statement

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC