Singapore Institute of Technology

File(s) stored somewhere else

Please note: Linked content is NOT stored on Singapore Institute of Technology and we can't guarantee its availability, quality, security or accept any liability.

Hierarchical Deep Learning Model with Inertial and Physiological Sensors Fusion for Wearable-Based Human Activity Recognition

conference contribution
posted on 2023-10-27, 01:50 authored by Dae Yon Hwang, Pai Chet NgPai Chet Ng, Yuanhao Yu, Yang Wang, Petros Spachos, Dimitrios Hatzinakos, Konstantinos N. Plataniotis

This paper presents a human activity recognition (HAR) system with wearable devices. While various approaches have been suggested for HAR, most of them focus on either 1) the inertial sensors to capture the physical movement or 2) subject-dependent evaluations that are less practical to real world cases. To this end, our work integrates sensing in-puts from physiological sensors to compensate the limitation of inertial sensors in capturing the human activities with less physical movements. Physiological sensors can capture physiological responses reflecting human behaviors in executing daily activities. To simulate a realistic application, three different evaluation scenarios are considered, namely All-access, Cross-subject and Cross-activity. Lastly, we propose a Hierarchical Deep Learning (HDL) model, which improves the accuracy and stability of HAR, compared to conventional models. Our proposed HDL with fusion of inertial and physiological sensing inputs achieves 97.16%, 92.23%, 90.18% average accuracy in All-access, Cross-subject, Cross-activity scenarios, which confirms the effectiveness of our approach.


Journal/Conference/Book title

2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 23-27 May 2022, Singapore.

Publication date



  • Published

Usage metrics


    No categories selected


    Ref. manager