Singapore Institute of Technology
Browse
- No file added yet -

Using generalized similarity filter to enhance proximity detection for sparse beacon deployment

conference contribution
posted on 2023-10-27, 09:01 authored by Li Zhu, Rong Ran, Pai Chet NgPai Chet Ng, James SheJames She

Considering an incomplete signals acquisition due to a sparse beacon deployment, this paper proposes a generalized similarity filter to improve the performance of proximity detection and thus guarantee the quality of proximity-based service (PBS). In particular, this paper leverages Bluetooth Low Energy (BLE) Beacons to realize a PBS system which comprises a number of Proximities of Interest (PoIs). We define a PoI as an object or area which is associated with a beacon such that each PoI can announce their presence implicitly through the beacon's signal. However, under a sparse beacon network condition in which some beacons associated with some PoIs are malfunction or their batteries die before the scheduled maintenance, a receiver (e.g., smartphone) might fail to return the target PoI correctly. In view of the quality degradation in consequence to the sparse condition, we refine the performance of classical compressive sensing based algorithm with a generalized similarity filter. The effects of different similarity measures on proximity detection performance are also investigated. Simulation results indicate that the proposed algorithm improves the detection accuracy as compared to the conventional compressive sensing based algorithm. Specifically, Chordal-based similarity filter achieves substantial improvement in comparison with Mahalanobis and Euclidean-based similarity computation.

History

Journal/Conference/Book title

2017 International Conference on Information and Communication Technology Convergence (ICTC), 18-20 October 2017, Jeju, Korea.

Publication date

2017-12-14

Version

  • Published

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC