A sequential cooperative game theoretic approach to scheduling multiple large-scale applications in grids
Scheduling large-scale applications in heterogeneous distributed computing systems is a fundamental NP-complete problem that is critical to obtaining good performance and execution cost. In this paper, we address the scheduling problem of an important class of large-scale Grid applications inspired by the real world, characterized by a huge number of homogeneous, concurrent, and computationally intensive tasks that are the main sources of performance, cost, and storage bottlenecks. We propose a new formulation of this problem based on a cooperative distributed game-theory-based method applied using three algorithms with low time complexity for optimizing three important metrics in scientific computing: execution time, economic cost, and storage requirements. We present comprehensive experiments using simulation and real-world applications that demonstrate the effectiveness of our approach in terms of time and fairness compared to other related algorithms.