File(s) not publicly available
Enhancing decision making with machine learning: The case of aurora crowdlending platform
The crowdlending industry is a fast-growing financial technology (fintech) sector that brings together borrowers and lenders. As an alternative financial intermediary, the crowdlending industry plays an essential role in reducing the financial exclusion of small and medium-sized enterprises (SMEs) struggling to obtain funds from traditional financial intermediaries such as commercial banks. With the onset of Covid-19 and the deteriorating economies worldwide, Singapore crowdlending platforms have come under pressure due to the increasing default rate of their borrowers. This case study illuminates the challenges faced by Aurora (pseudonym), a crowdlending platform that operates in Singapore, Indonesia, and Malaysia. In response to high default rates during Covid-19, Aurora’s management made improvement to its current machine learning-based credit scoring model in June 2021. This case study describes the challenges Aurora faced in identifying relevant features for the machine learning model, data preparation and cleansing, and selecting the appropriate credit model algorithms to replace its current approval process.
Funding
This research was funded by Singapore Institute Technology Seed Grant (R-MOE-E103-D017).
History
Journal/Conference/Book title
Journal of Information Technology Teaching CasesPublication date
2023-05Project ID
- 6580 (R-MOE-E103-D017) P2P and Crowdfunding: Credit Score, Probability of Default Models and Machine Learning