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A. Details on Experiments

A.1. Randomization-based Sanity Checks vs. Faith-
fulness

The ResNet-50 and DenseNet-121 are used as pro-
vided by the Torchvision package of PyTorch [6]. For the
EfficientNet-B0 we resort to a pretrained model provided by
the github of Luke Melas [5]. All results are averaged over
the first 1000 images from the ImageNet validation set.

For model-randomization-based sanity checks testing we
reset the layers as per the initialization introduced by [3].
We report model randomization for a partial set of layers, as
these results are in already known from [1], which makes
an exhaustive computation for each layer unnecessary. For
the ResNet-50 we randomize the fully connected layer, and
in each step we randomize all layers from the last random-
ized layer until the next layer with name .conv1 as per
Torchvision until we have randomized 16 .conv1-named
layers. For the DenseNet-121 we also randomize the fully
connected layer, and in each step we randomize all layers
from the last randomized layer until the next third layer
with name .conv1 until we have randomized 63 .conv1-
named layers. For the EfficientNet-B0 we randomize the
fully connected layer, and in each step we randomize all lay-
ers from the last randomized layer until the next layer with
name ._depthwise_conv until we have randomized 17
._depthwise_conv-named layers.

For the perturbation-based testing we create a blurred
version of the original image, using a constant blur kernel of
kernel size 15. We perform the perturbation by replacing a

region of kernel size 8 or 15 in the original image by a patch
from the blurred version. We do this for the 30 regions in an
image which have the highest average attribution map score.
Unlike the random draw for a patch used [7], using a blurred
copy results in a less pronounced outlier structure due to
preservation of color statistics while removing texture. We
measure the decrease of the prediction function under the
iterative replacement of the highest scoring patches of the
image by the corresponding patches from the blurred copy.

A.2. Forward Pass-Adaptive β-rule

It is used in the experiments for model faithfulness es-
timation. The idea is based on the interpretation that β

1+β
in LRP-β is the fraction of redistributed negative to posi-
tive relevance. An adaptive way to determine its value can
be derived by setting it equal to the corresponding fraction
−

∑
i(wixi)−∑

i(wixi)+
of the input statistics of a neuron, and solving

it for β as in:

β

1 + β
=

−
∑

i(wixi)−∑
i(wixi)+

(1)

⇒ β =
−
∑

i(wixi)−∑
i(wixi)+ −

∑
i(wixi)−

(2)

We use a value of β∗ = min(β, 3.0) in all experiments.

A.3. Additional Results of Model Faithfulness Ex-
periments

Please see Figure 1 for results with a kernel size of 8.
Furthermore Figure 2 shows results for 4000 additional im-
ages from the Imagenet validation set, and for 5000 images
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from the MSCOCO dataset. One can see that the difference
between gradient-based methods and LRP variants is also
visible on MSCOCO data.

For computing faithfulness on the MSCOCO validation
dataset we fine-tuned a multi-label classifier over ground
truth derived from the intersection of the center crop with
the bounding boxes of the MSCOCO detection task. While
it could be more interesting to see results from training from
scratch, we chose fine-tuning in order to arrive at a well-
performing classifier within a small training time budget
and to avoid the risk of having to try a large number of
setups until we can obtain a properly performing network
when training from scratch. It should be noted that there are
very few pre-trained model initializations available which
use large datasets in the order of hundred thousands with-
out including ImageNet data, although foundation models
are emerging to provide alternatives. For fine-tuning we
assigned a centercrop a positive label if it contained at least
40% of the area of a bounding box of a class. We used
AdamW, a learning rate of 0.0001 for all layers, a batch size
of 64. Data augmentation used a 224 pixel resize, a 224
pixel center crop and RandomHorizontalFlip. We selected
the model with the best validation performance within the
first 20 epochs. Unlike ImageNet, MSCOCO comes with
multi-label predictions. In contrast to ImageNet, where the
unique ground truth label was used to obtain explanations,
we chose for MSCOCO to explain the highest predicted
label.

B. Proof of Theorem 1
Proof. Consider the term in Equation (1) of the main paper.
Since we consider processes with σAB ≥ 0, this attains the
minimum at σAB = 0, resulting in

min
σAB≥0

∣∣∣∣ 2µAµB + C1

µ2
A + µ2

B + C1

2σAB + C2

σ2
A + σ2

B + C2

∣∣∣∣ (3)

=
|2µAµB + C1|
µ2
A + µ2

B + C1
· min
σAB≥0

|2σAB + C2|
σ2
A + σ2

B + C2
(4)

=
|2µAµB + C1|
µ2
A + µ2

B + C1

C2

σ2
A + σ2

B + C2
(5)

≤ 2|µAµB |+ C1

µ2
A + µ2

B + C1

C2

σ2
A + σ2

B + C2
(6)

≤ µ2
A + µ2

B + C1

µ2
A + µ2

B + C1

C2

σ2
A + σ2

B + C2
(7)

The last inequality holds due to ±2ab ≤ a2 + b2.

C. The Sensitivity of Spearman Rank Correla-
tion Minimization Towards Noise

In Section 3 of the main paper we demonstrated the sensi-
tivity of the SSIM metric towards random attributions. The

same (in terms of ranks) holds for the other distance metric
employed by [1], the Spearman Rank Correlation, given as

σR(A)R(B)

σR(A)σR(B)
, (8)

with R(A) and R(B) being the ranks derived from attri-
bution maps A and B. The following Theorem and Proof
show the sensitivity of this metric’s minimization towards
random noise analogously to Theorem 1 and the correspond-
ing Proof:

Theorem 3. Consider the set of all statistical processes with
non-negative expected covariance between the correspond-
ing ranks σR(A)R(B) ≥ 0.

Then the expected Spearman Rank Correlation is mini-
mized by a statistical process with zero covariance between
the corresponding ranks.

Proof. Consider the term in Equation (8). Since
σR(A)R(B) ≥ 0, and the standard deviations
σR(A), σR(B) ≥ 0, this attains the minimum at
σR(A)R(B) = 0, resulting in

min
σR(A)R(B)≥0

(
σR(A)R(B)

σR(A)σR(B)

)
(9)

=
0

σR(A)σR(B)
= 0 (10)

Of course, the ranks and their covariance depend not only
on the attribution maps, but also on the employed ranking
function. However, if simply the sorted indices of attribu-
tion maps (or their absolute values) are used as ranks, then
σR(A)R(B) ≥ 0 iff σAB ≥ 0, and Theorem 3 holds for all
statistical processes with non-negative expected covariance
σAB ≥ 0.

D. The Sensitivity of Normalized MSE Maxi-
mization Towards Noise

One may consider to replace the Structural Similarity In-
dex Measure (SSIM) by a Mean-Squared Error (MSE). This
comes with another topic to be considered: Different meth-
ods to compute attribution maps may exhibit different patch-
wise variances, which will affect the scale of differences
used in model-randomization-type sanity checks unrelated
to the effects coming from the model randomization itself.
This raises the question of how to normalize attribution maps
in order to ensure a comparability of the distances computed
using different attribution methods.

We consider for the case of MSE attribution maps which
are normalized by dividing the attribution map by the square-
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Figure 1. Results of model faithfulness testing by measuring the correlation to iterative occlusion with a kernel size of 8 on 1000 ImageNet
validation set images. The comparison shows the gradient, gradient × input, integrated gradient, guided backpropagation and several LRP
approaches. The occlusion is performed by taking patches from a blurred copy of the original image. The figure shows the softmax scores.
Lower is better.



+4000 ImageNet images 5000 MSCOCO images

R
es

N
et

0 5 10 15 20 25 30
Region alteration step

0.2

0.3

0.4

0.5

0.6

0.7
So

ftm
ax

 sc
or

e

0 5 10 15 20 25 30
Region alteration step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

So
ftm

ax
 sc

or
e

D
en

se
N

et

0 5 10 15 20 25 30
Region alteration step

0.2

0.3

0.4

0.5

0.6

So
ftm

ax
 sc

or
e

0 5 10 15 20 25 30
Region alteration step

0.3

0.4

0.5

0.6

0.7

0.8

0.9
So

ftm
ax

 sc
or

e

E
ffi

ci
en

tN
et

0 5 10 15 20 25 30
Region alteration step

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

So
ftm

ax
 sc

or
e

0 5 10 15 20 25 30
Region alteration step

0.5

0.6

0.7

0.8

0.9

So
ftm

ax
 sc

or
e

Figure 2. Additional results for Model Faithfulness, kernel size 15. Left column: Results on 4000 additional ImageNet images. Right
column: Results on 5000 images from MSCOCO. The figure legend is the same as in Figure 2 in the submission and in Figure 1 of this
supplement. Lower is better.
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Figure 3. Additional results for Model Faithfulness, kernel size 15. Results on 5000 images from PASCAL VOC. The figure legend is the
same as in Figure 2 in the submission and in Figure 1 of this supplement. Lower is better.



root of its average second moment estimate:

A(
Ê[A2]

)1/2 =
Ah,w(

1
HW

∑
h′,w′ h2

h′,w′

)1/2 , (11)

where Ah,w is the value of the attribution map at pixel loca-
tion (h,w) and H,W denote the attribution map height and
width, respectively. This ensures that the average squared
distance of an attribution score per pixel from the attribu-
tion value of 0 is 1. One may ask why we did not choose
the more common standard deviation 1. Standard deviation
normalizes the average squared distance of a pixel-score
from the mean of a patch to be one. However, the mean
score over the pixels of the different attribution methods
(such as gradient with ℓ2-norm over the RGB-subpixels, also
known as Sensitivity [2, 8], gradient with averaging over the
RGB-subpixels, gradient × input and integrated gradients)
has no particular meaning for explaining the prediction in
the context of the above methods. The value of zero (0)
has for all of above methods the meaning of being the esti-
mate of non-contribution to the prediction, which justifies
the choice of second moment estimates. Thus we ensure an
equal average distance from the point of no-contribution by
this type of normalization. This ensures better comparability
of distances among attribution maps computed for different
attribution map processes.

Using the MSE does not resolve the issue that a zero
covariance attribution map yields the best results among all
statistical processes with non-negative covariances σAB ≥ 0.
In the following A, B can be single subpixels. It directly
translates to patches when using E[∥A−B∥22] instead.

The following theorem is again meant to be used with two
different attribution maps A, B, e.g., coming from a model
and a partially randomized variant of it, over the same patch
location.

Theorem 4. Consider the set of all statistical processes with
non-negative expected covariance for each patch σAB ≥
0. Then the expected MSE can be maximized by using a
statistical process with zero covariance and the maximal
value is 2− 2 µAµB

E[A2]1/2E[B2]1/2

Proof.

E

[(
A

E[A2]1/2
− B

E[B2]1/2

)2
]

(12)

=
E[A2]

E[A2]
− 2

E[AB]

E[A2]1/2E[B2]1/2
+

E[B2]

E[B2]
(13)

= 2− 2
σAB

E[A2]1/2E[B2]1/2
− 2

µAµB

E[A2]1/2E[B2]1/2
(14)

≤ 2− 2
µAµB

E[A2]1/2E[B2]1/2
(15)

1
(
Ê[A2

h,w]− (Ê[Ah,w])2
)1/2

for reference

With respect to the influence of means, for µAµB ≈ 0,
this would result in a MSE of 2. Note that we can observe
from Figure 5 that the MSE indeed attains a value close
to 2.0 for certain methods which perform well in model-
randomization-type sanity checks, such as gradient and in-
tegrated gradient. In light of above theorem, this finding is
conspicuous as it may indicate a correlation σAB and means
µA, µB close to zero, in the sense of high gradient shattering
noise.

This result shows, that the contribution from the ran-
domization of a model and the noise from the attribution
map process are still entangled when using MSE for model-
randomization-type sanity checks. Consequently, using at-
tribution map processes with a lower degree of correlation
within a patch makes them appear more favorable when
using model-randomization-type sanity checks to compare
attribution maps. As noted before, a lower degree of cor-
relation may originate from using a process with a high
amount of zero-correlation noise, and in the worst case, from
a statistically independent random process.

On a side note, using an unnormalized MSE would result
in

E
[
(A−B)

2
]
= E[A2]− 2E[AB] + E[B2] (16)

= σ2
A − 2σAB + σ2

B

+ E[A]2 − 2E[A]E[B] + E[B]2 (17)

= σ2
A + σ2

B + (µA − µB)
2 − 2σAB (18)

≤ σ2
A + σ2

B + (µA − µB)
2 (19)

This would again be a measure that is maximized among
the set of processes with non-negative covariance by us-
ing σAB = 0 and additionally be sensitive to increasing
patch-wise variances σ2

A, σ2
B in processes. The proposed

normalization by the second moment puts a bound on the
sensitivity to patch-wise variances.

In summary, this section shows that replacing minimiza-
tion of a similarity by maximization of a well-known squared
distance still retains a sensitivity and possible preference to-
wards attribution map methods with low correlation when
viewed as a statistical process.

D.1. A Note on Normalization

The scores obtained from different attribution methods
generally do not share the same range of values. There-
fore, in order to compare them, some sort of normalization
is required, however, care has to be taken in doing so as
to not alter or destroy any information provided by attri-
butions. The seminal work on model-randomization-based
sanity checks [1] uses normalization by division with statis-
tics using the maximal absolute value of an attribution map.



This, however, may introduce additional variance in the mea-
surement when computing differences of attribution maps:

Minima or maxima are the only statistics among quantile
estimators which do not converge for an increasing sam-
ple size to a finite expectation. One can easily see this by
considering random draws from a normal distribution. The
maximum will tend to infinity as the sample size n → ∞
increases.

More formally, as noted in [9], the distribution of sev-
eral known quantile estimators for the p-th quantile of a
distribution is approximately normal with a variance of

σ2 =
p(1− p)

nf(F−1(p))
(20)

where f(·) is the density, F (·) the cumulative density of the
distribution which is used to draw samples used to compute
the p-th quantile estimator, and n is the sample size. Thus
for quantile estimators p ≈ 0, p ≈ 1 with values F−1(p) at
the tails of the distribution, where the value of the density
f(·) is low, the variance σ2 will become unbounded, as
long as f(F−1(p)) decays faster than O(p−1) or O((1 −
p)−1), which is the case for a higher degree polynomial or
exponential decay.

It should be noted that normalization aiming at a proper
perception by the human eye and normalization for the sake
of comparability of distances are non-equivalent goals. The
former needs to ensure a bounded range, and color intensities
which are well perceivable.

Normalization by the maximum yields a high variance
of the estimator, and, while suitable for visualization to the
human eye, does not preserve a quantity useful for the com-
parison of distances across different models under parameter
randomization. For this reason we will consider a different
normalization as outlined above.

E. Proof of Theorem 2
Proof. To see this, consider two sets of non-negative input
activations for a neuron, XL and XS . We assume that each
input from XL is by a factor of K larger than each input
from XS such that:

min
xl∈XL

xl ≥ K max
xs∈XS

xs . (21)

In order for a single xs to have at least the same effect
on the output as a single xl > 0, it requires wsxs ≥ wlxl

and thus for the weights ws ≥ Kwl. This corresponds to a
ratio distribution of two zero-mean normal variables, which
is known to have a Cauchy density, as for example shown
in [4]

f

(
ws

wl
= K

)
=

1

πγ

1

K2/γ2 + 1
, γ =

σs

σl
. (22)

The quantity of interest in this case is the tail-CDF

P

(
ws

wl
≥ K

)
= 1− CDFγ(K) . (23)

In order for each of the neurons in the small-value set to
have the same summed contribution to the output, we require

∑
xs∈XS

wsxs ≥
∑

xl∈XL

wlxl . (24)

This can be combined together as follows.∑
xs∈XS

wsxs and
∑

xl∈XL

wlxl (25)

are normally distributed random variables with respect to
draws of the weights w with zero mean and variances

σS =
∑

xs∈XS

x2
s and σL =

∑
xl∈XL

x2
l . (26)

Thus, for
∑

xl∈XL
wlxl > 0 the requirement in Equation

(24) translates into the probability of the ratio∑
xs∈XS

wsxs∑
xl∈XL

wlxl
≥ 1 (27)

This is the cumulative tail probability P (Z ≥ 1) = 1 −
CDFγ(1) with a parameter γ1 given as

γ1 =

√
σS

σL
=

√∑
xs∈XS

x2
s∑

xl∈XL
x2
l

(28)

The Cauchy distribution obtains larger cumulative tail prob-
abilities for larger values of the parameter γ. Therefore for
an upper bound on cumulative tail probabilities, we need to
obtain an upper bound on γ1.

γ1 =

√∑
xs∈XS

x2
s∑

xl∈XL
x2
l

(29)

≤

√∑
xs∈XS

maxxs∈XS
x2
s∑

xl∈XL
minxl∈XL

x2
l

(30)

=

√
|XS |maxxs∈XS

x2
s

|XL|minxl∈XL
x2
l

(31)

Eq.(21)
≤

√
|XS | 1

K2 minxl∈XL
x2
l

|XL|minxl∈XL
x2
l

(32)

=

√
|XS |
|XL|

1

K
(33)



where we used Equation (21) to get a term depending on K.
Plugging in this upper bound γ1 into the CDF shows

CDFγ1
(1) = 0.5 +

1

π
arctan(

1− 0

γ1
) (34)

= 0.5 +
1

π
arctan

 K√
|XS |
|XL|

 (35)

= CDFγ2
(K), γ2 =

√
|XS |
|XL|

. (36)

Therefore we obtain the cumulative tail CDF of a Cauchy
distribution from the value of K onwards P (Z ≥ K) with a

parameter γ2 =
√

|XS |
|XL| .

Section I in this supplement provides estimates for this
probability for three trained deep neural networks which
provides empirical evidence for the sparsity.

If one would consider average contributions

1

|XS |
∑

xs∈XS

wsxs ≥
1

|XL|
∑

xl∈XL

wlxl , (37)

then one would obtain the analogous result with an inverted

parameter γ2,avg =
√

|XL|
|XS | .

A reason to consider such averages instead of sums would
be the case when one is interested to analyze when two re-
gions of an input would achieve the same average explana-
tion score per input element of the respective regions. This
case corresponds in an attribution map to two regions with
the same average color intensity per pixel.

This can be shown as follows. If we consider

1

|XS |
∑

xs∈XS

wsxs and
1

|XL|
∑

xl∈XL

wlxl , (38)

then these are normally distributed random variables with
respect to draws of the weights w with zero mean and vari-
ances

σS =
1

|XS |2
∑

xs∈XS

x2
s and σL =

1

|XL|2
∑

xl∈XL

x2
l . (39)

The difference to the proof above is a multiplicative factor
in γ1 in Equation (29) of√√√√ 1

|XS |2
1

|XL|2
=

|XL|
|XS |

(40)

⇒ γ2,avg =
|XL|
|XS |

γ2 =
|XL|
|XS |

√
|XS |
|XL|

=

√
|XL|
|XS |

(41)

F. The Monotonicity Property of selected Ex-
planation Methods

We show here that several explanation methods satisfy the
positive monotonicity property that if we consider two inputs
xi, xj which have no other connections except to neuron y,
then wixi ≥ wjxj > 0 implies |R(xi)| ≥ |R(xj)| .

F.1. Positive Monotonicity for Gradient × Input

z = g(
∑
k

wkxk + b) (42)

R(xi) =
∂f

∂z

∂z

∂xi
(x)xi =

∂f

∂z
g′(· · · )wixi (43)∑

k

wkxk + b > 0, wixi > wjxj > 0 ⇒ (44)

|R(xi)| =
∣∣∣∣∂f∂z

∣∣∣∣ |g′(· · · )||wixi| (45)

> |R(xj)| =
∣∣∣∣∂f∂z

∣∣∣∣ |g′(· · · )||wjxj | (46)

In fact, a stronger version holds here: |wixi| ≥ |wjxj |
implies |R(xi)| ≥ |R(xj)|

F.2. Positive Monotonicity for Shapley Values

This holds when wixi > wjxj > 0 and the activation
function g is monotonously non-decreasing. In that case, for
all subsets S : i /∈ S, j /∈ S:

f(S ∪ {i}) = g(
∑
k∈S

wkxk + b+ wixi) (47)

≥ g(
∑
k∈S

wkxk + b+ wjxj) = f(S ∪ {j})

(48)

⇒ ϕ(i) =
∑
S

c|S|(f(S ∪ {i})− f(S)) (49)

≥
∑
S

c|S|(f(S ∪ {j})− f(S)) = ϕ(j) ,

(50)

where

c|S| =
1

d
(
d−1
|S|
) (51)

are the normalizing constants used in the exact computation
of Shapley values.

F.3. Positive Monotonicity for LRP-β



R(i) = R(z)(1 + β)
(wixi)+∑
k(wkxk)+

−R(z)β
(wixi)−∑
k(wkxk)−

(52)

wixi > 0 ⇒ R(i) = R(z)(1 + β)
(wixi)+∑
k(wkxk)+

(53)

wjxj > 0 ⇒ R(j) = R(z)(1 + β)
(wjxj)+∑
k(wkxk)+

(54)

wixi ≥ wjxj > 0 ⇒ (wixi)+ ≥ (wjxj)+ (55)

⇒ |R(i)| = |R(z)|(1 + β)
(wixi)+∑
k(wkxk)+

(56)

≥ |R(j)| (57)

In fact, a stronger version holds here: |wixi| ≥ |wjxj |
and sign(wixi) = sign(wjxj) implies |R(xi)| ≥ |R(xj)|
.

G. Positive Explanation Score Dominance in
ReLU Networks with Positive Logits

In this section we briefly show another property to hold,
when explaining positive logits in ReLU networks with non-
positive biases, irrespective of the randomization.

The property is that the positive evidence will dominate
the negative evidence in every layer until the input, under the
condition that the explanation is additive for ReLU units with
positive outputs. An exception to it would occur when one
has large positive biases, and one would attribute explanation
scores to the bias terms itself.

Consider a positive logit f(x) as a linear combination of
the last layer activations ϕ(L) with a non-positive bias b ≤ 0:

0 <f(x) =
∑
i

wiϕ
(L)
i (x) + b (58)

0 <R

(∑
i

wiϕ
(L)
i (x)

)
=
∑
i

R
(
wiϕ

(L)
i (x)

)
(59)

We can see that the explanations for the last layer activations
must sum to a positive value as well. Now let us consider
the output of a ReLU feature

ϕ
(L)
i (x) = ReLU

(∑
k

wkϕ
(L−1)
k (x) + b

)
. (60)

If the negative contributions to it dominate, then the output
value of the ReLU is zero. This has the meaning that this
neuron detects no feature. In this case R

(
wiϕ

(L)
i (x)

)
= 0,

and no explanation scores will be propagated back to its
inputs ϕ(L−1)

k (x), that is R(ϕ
(L−1)
k (x)) = 0 received along

this path from ϕ
(L)
i (x).

If positive contributions to it dominate, then 0 < ReLU
and we use the same idea as in the previous section:

0 <ReLU

(∑
k

wkϕ
(L−1)
k (x)

)
=
∑
k

wkϕ
(L−1)
k (x)

(61)

ϕ
(L)
i (x) = ReLU

(∑
k

wkϕ
(L−1)
k (x) + b

)

⇒ R
(
wiϕ

(L)
i (x)

)
= R

(
ReLU

(∑
k

wkϕ
(L−1)
k (x)

))
=
∑
k

R(wkϕ
(L−1)
k (x)) (62)

⇒ 0 <
∑
i

R
(
wiϕ

(L)
i (x)

)
=
∑
i

∑
k

R(wkϕ
(L−1)
k (x))

(63)

We use here only additivity of explanations R(·), and non-
assignment of explanation scores to bias terms. In summary,
combining equation (59) with (63) shows that the sum of
relevances in layer L− 1 is positive and equal to the initial
logit relevance. Iterating this through all layers proves the
claim until the input. In practice, explaining positive logits
with methods which satisfy such an additivity, will result in
dominantly positive explanations.

H. Top-down Model Randomization Experi-
ments

Please see Figures 4 and 5 for the results on ImageNet,
and Figure 6 for results on MSCOCO. For better compara-
bility all attribution maps were normalized by the square
root of their second moment (not their variance) as discussed
in Section D. The results are in principle known from [1].
The behaviour on ImageNet and on a model finetuned from
ImageNet to MSCOCO is qualitatively very similar.

I. Probabilities of overtaking large activations
from forward pass activation statistics

This Section computes an upper bound for the probabil-
ity of overtaking according to Theorem 2 for given trained
models from Resnet-50, DenseNet-121 and EfficientNet-B0
architectures. This shows that in practice these probabilities
are small.

To do this, we compute for a given image the forward
pass activations, and pool them in every layer across spatial
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(c) EfficientNet-B0

Figure 4. The figure shows the results of top-down model randomization-based sanity checks with SSIM after normalization of attribution
maps by their second moment. Lower is better.
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Figure 5. The figure shows the results of top-down model randomization-based sanity checks with MSE after normalization of attribution
maps by their second moment. Of note is also the score of gradient-based results close to the value of 2 in comparison with the upper bound
in Equation (15). Higher is better.
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Figure 6. The figure shows the results of top-down model randomization-based sanity checks for the MSCOCO dataset with SSIM after
normalization of attribution maps by their second moment. Lower is better.

and channel dimensions (because usually a convolution ker-
nel takes all channels as input). Next we compute a set of
quantile estimators for these activation values in the range
from 0.95 down to 0.1 in 0.05 decrements. This yields 18
quantile estimators for every layer of the net and for one

image. We compute the mean value of these estimators over
1000 images from the ImageNet validation set.

After that we can compute estimates for the value of

γ =
√

|XS |
|XL| and K from this information for every pair



(qh, ql) of a high quantile qh ∈ {0.95, . . . , 0.85} and a low
quantile ql ∈ {0.5, . . . , 0.1}. K is given as the ratio of
quantile estimator values K ≥ V (qh)

V (ql)
, whereas γ is given

as
√

|XS |
|XL| =

√
ql

1−qh
, which corresponds to the relative

fractions of the amount of bottom-k% activations to the
amount of observed top-k% activations.

Finally we can plug this into the Cauchy cumulative tail
density Pγ(Z ≥ K) to obtain the probabilities.

Each plot shows on the x-axis the low quantile ql ∈
{0.5, . . . , 0.1}, and on the y-axis Pγ(Z ≥ K). It shows one
graph of probabilities Pγ(Z ≥ K) for each value of the high
quantile qh ∈ {0.95, 0.9, 0.85}. The graphs are color coded
according to qh.

The results are shown in Figures 7, 8 and 9.
We can see rather low probabilities despite the Cauchy

distribution having a low order polynomial decay. Note
that the EfficientNet can have negative activation statistics
for some lower layers. In this case K is computed using
the inverse (because in this case one wants to overtake the
absolute larger negative values using the absolute smaller
negative values).

Some graphs, like for Resnet-50 levels 9 and 12 remain
almost flat zero because the mean activation is very close to
zero for the bottom-50% values due to a strong sparsity in
these layers. See Section J for the fraction of non-positive
activations as an explanation, and compare the graph against
Resnet-50 Level 6 and the corresponding statistics in Section
J. We have verified that for higher bottom-% values one
would see small positive overtaking probabilities Pγ(Z ≥
K).

J. Activation Statistics
This section shows the fraction of non-positive activations.

Results are shown in Figure 10. One can see that for ResNet-
50 and DenseNet-121, most layers have at least 30% zero
activations. The amount of nonpositive activations is less
for the EfficientNet-B0, which makes sense as this is less
wide than other architectures. From layer 11 onwards it has
also at least 20% zeros. Note that activations can get truly
negative for the Efficientnet as a result of using the Swish
activation function. Therefore seeing 100% in layer 0,1,3,5
is not a mistake.
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Figure 7. Lower probabilities support Theorem 2 better.
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(a) DenseNet121 Level0

10 20 30 40 50
bottom % of activations

−0.04

−0.02

0.00

0.02

0.04

Theorem 2 tail probabilities
top  5 %
top 10 %
top 15 %

(b) DenseNet121 Level10
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(c) DenseNet121 Level20
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(e) DenseNet121 Level73
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Figure 8. Lower probabilities support Theorem 2 better.
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(b) EfficientNet-B0 Level3
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(e) EfficientNet-B0 Level12
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Figure 9. Lower probabilities support Theorem 2 better.
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Figure 10. Non-positive activations per layer. Higher values indicate a higher fraction of non-positive activations.


