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There is increasing interest in understanding fuel consumption from the perspective of increasing energy efficiency
on a vessel. Thus the aim of this paper is to present a new framework for data-driven estimation of fuel consumption
by employing a combination of (i) traditional statistical analysis and (ii) Artificial Neural Networks. The output of
the analysis is the most frequently occurring fuel-speed curves corresponding to the respective operational profile.
The inputs to the model consider important explanatory variables like draft, sea current and wind. The methodology
is applied to a case study of a fleet of 9000 TEU vessels, in which telemetry data on the fuel consumption, vessel
speed, current, wind direction and strength were analysed. The performance of the method is validated in terms of
error estimation criterion like R2 values and against physical phenomena obtained from the data. The results can be
used to study the economic and environmental benefits of slow-steaming and or fuel levies, or by extending this part
of the model into exergy analysis for a more holistic review of energy saving initiatives.
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1. Introduction

1.1. Aim of study
Fuel efficiency of ships have, in recent years, been
of interest due to the volatility of fuel prices and
environmental considerations. The volatility of the
fuel prices, especially when it is high, have be-
come significant economic driving forces to opti-
mise each voyage, as fuel costs can exceed 50% of
a carrier’s cost when sailing speeds and fuel costs
are high (Stopford, 2010; Ronen, 2011).

In terms of environmental concerns, the IMO
set up a goal of 50% reduction of GHG emission
by 2050 (compared to the 2008 levels) (Inter-
national Maritime Organisation, 2018) in order
to reduce the footprint of ships significantly. As
of 1 Jan 2019, ships greater than 5000 tonnes
are required to have continuous monitoring on
fuel consumption (International Maritime Organi-
sation, 2018), this sets up an environment encour-
gaing a more holistic research with access to real-
time information and fuel consumption, and with
a legal requirement driving the push for improved
emissions control.

The paper proposes to process telemetry data in
a data-driven model to analyse the optimal speed,
and weather effects to optimise fuel consumption.
It also combines port-port vessel journey to pre-
dict the fuel consumption given the desired vessel

speed, current, average draft, wind direction and
wind strength.

1.2. Literature review
Fuel consumption of a ship is of interest as an im-
portant piece of information for several decision-
making points on its operation profiles. It has a
direct impact on the fuel cost, and emission goals.

The ship’s power vs ship curve that is prepared
during the delivery sea trials are usually the first
point of reference, but these are usually based
on a limited range of sea-states, thus this is not
representative of the sea-faring scenario most of
the time.

The prediction of fuel-speed functions can be
classified in three ways (i) data-based (which in-
cludes statistical methods and machine learning
techniques) (ii) naval architecture principles (iii)
hybrid (of methods (i) and (ii)). In recent years,
methods steer towards methods (i) and (iii), either
as a full data-based or a combination of naval
architecture principles and data-based methods.
This is largely due to numerical or theoretical
methods which have to be extensively compli-
cated to replicate the results measured under op-
eration conditions. The goal of this paper is also
to use telemetry data present onboard a vessel
to estimate its fuel consumption, thus the litera-
ture review is focussed on either data-based or a
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combination of data-based and naval architecture
principle models.

Regardless of the methods used to derive fuel-
speed curves, Adland et al. (2020), in partic-
ular, highlight that the assumption of constant
fuel-speed consumption elasticity needs to be re-
evaluated. Few researchers have focussed on that
aspect with the exception of Wang and Meng
(2012), who also reported that the coefficient of
fuel-speed curves of container ships varies from
2.7 to 3.3. Tsitsilonis and Theotokatos (2018) also
proposed a method to capture propeller curves
under different operational profiles (which in prin-
ciple recognises that a constant curve in either a
fuel-speed or power-rpm curve is not representa-
tive of the actual operational conditions).

Tsitsilonis and Theotokatos (2018) proposed to
use Kernel Density Estimates (KDE) to identify
shaft power as a function of the density bins
the data belongs to. Each shaft power data bin,
together with the respective vessel speed (of the
said data bin) forms an operational profile. The
most frequently occurring profile is the highest
peak demonstrated on the KDE plot. However the
method, applied on cargo vessels, bulk carriers
and VLCCs, only yielded differentiating power-
speed curves for VLCCs which travel on ballast
and laden journeys. The power-speed curves for
container ships and bulk carriers only had 1 such
curve after the analysis, which does not reflect true
conditions.

Thus, the method proposed in this paper method
aims to combine data categorisation from Bia-
lystocki and Konovessis (2016), and simplifica-
tion of the KDE method to group fuel-speed data
groups and the addition of a Artificial Neural
Network(ANN) to identify operating profiles not
discerned in the methods described above. This
paper attempts to shed light on the variances in the
fuel-speed data and draw relationships between
the variances in the ship resistance, by using an
analytical and systematic method to come up with
more accurate, updated fuel-speed curves accord-
ing to the operational profile.

This article is divided into several parts. In
Section 2, the statistical treatment of data is in-
troduced. Section 3 discuss the theory and set-up
of the ANN. Section 4 identifies how the param-
eters (average draft, current, wind strength and
direction) relate to fuel consumption estimation.
The results from several realistic case studies are
presented in Section 5 including a discussion of
validation of results. Section 6 discusses the appli-
cation of the model. The conclusions of this study
are presented in Section 7.

2. Methods and data

2.1. Modelling of ship fuel consumption
The data comes from the telemetry system on
board a fleet of two sister vessels of 9000 TEU

capacity. The main characteristics of the analysed
ship are listed in the table below (Table 1):

Table 1.: Main characteristics of fleet of ship.

Type 9000 TEU
container ship

Built 2013
Length LOA (m) 328.2
Width (m) 45.2
Moulded depth (m) 27.1
Summer Draft (m) 14.5
Deadweight (ton) 108,600
Shaft Power @
MCR (kw)

51,070

Fuel consumption of a vessel is linked to the
resistance that a ship encounters. The main idea
of methods outlined in the literature review is to
relate resistance of a ship to its fuel consumption.
Bialystocki and Konovessis (2016) highlighted
three parameters in their statistical analysis of fuel
consumption as : (i) increased draft and displace-
ment (ii) worsening of weather conditions and (iii)
worsening of hull and propeller roughness.

For this analysis, there is no access to hull
condition thus the five factors that could relate to
item (i) and (ii) and are accessible as telemetry
data, are identified below:

• Average draft
• Current
• Wind direction and wind speed
• Vessel journey :High seas vs sheltered

water

First and foremost, vessel speed has a major
impact on fuel consumption, and this relationship
is characterised by a power function, suggesting
that at higher speeds, there is a non-linear (higher)
increase in fuel consumption if other conditions
remain constant.

Average draft is used as an indication of the in-
tended cargo weight and arrangement in the cargo
holds.

The sea-state can be used to classify the subse-
quent three parameters.

Current can act as an aid or impediment to
a vessel depending on the direction of current
and the vessel’s travelling direction. If current is
against the vessel, the vessel experiences greater
resistance. Current is recorded as knots (kn) based
on telemetry data on the difference between the
water speed and vessel speed-over-ground.

The weather a ship faces during voyage has
significant influence on her fuel consumption, in
particular relating to prevailing wind and waves.
Normally, a 10 - 15% weather margin (Watson,
1998) is taken into account in design calculations.
Head wind requires more power for the ship to
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advance; therefore more fuel is consumed by the
main engine. A tail wind, on the other hand, de-
creases the amount of fuel consumed. Depending
on the cargo load, a beam wind, with the windex
effect can also have significant influence on the
fuel consumption. The forces of the wind are
classified according to Beaufort scale, while the
wind direction is based on relative angle range
from 0 - 180 degrees, which are then filtered into
3 categories : Head (0 - 60 degrees), Beam (60-
120 degrees), Tail wind (120-180 degrees). The
method on classifying wind speed and direction
is based on Bialystocki and Konovessis (2016)’s
method.

Vessel leg is used to confine random effects to
a journey leg, as the cargo load does not change
during the journey from Port A to Port B, and also
the local weather or journey conditions (such as
close sea) can have a significant effect on the ANN
modelling accuracy.

2.2. Data treatment
2.2.1. Overall flow of data analysis

The first part of data analytics involves the use of
the appropriate data for the analysis. This refers
to cleaning the data of erroneous values, for e.g.
sensors cannot cover every operational profile and
may register negative values which do not make
sense in the physical world. Data is also cate-
gorised according to vessel journey as reported in
(Tsitsilonis and Theotokatos, 2018). In a typical
vessel journey, the cargo load is expected to re-
main the same in the leg of the journey, and the
decision behind the vessel speed would be depen-
dent on the schedule to meet at the upcoming port
or the weather conditions. Segmenting the data
in to vessel journey would reflect the clustering
of data, roughly according to the decision-making
time frame along a payload journey and, the local-
regional weather condition.

The data entries corresponding to the engine
steady state operation are identified.

(1) The engine power versus speed data set is split
into individual data sets corresponding to each
vessel voyage. One voyage is defined as the
travel from the origin to the destination port
(i.e. the one leg of a round voyage).

(2) The fuel consumption data (in tonnes/day)
from each voyage is then expressed as a Ker-
nel Density Function (KDF) in order to iden-
tify the most frequently occuring operational
profile. Each peak is classified as an vessel
operational profile.

(3) The specific kernel probability distributions
of the fuel consumption bins (from 1 minima
to the next minima) are extracted together
with the corresponding parameters (vessel
draft, sea-state conditions).

(4) Using the categorised engine power data, an

ANN model is trained according to the cur-
rent direction and strength, wind direction and
strength, average draft of vessel and speed of
vessel. The output of the model is the fuel
consumption in tonnes/day.

(5) Upon a satisfactory learning of the ANN
(based on error criteria and model validation
on physical phenomena), simulation is carried
out according the desired operational profile
to predict the fuel consumed for the opera-
tional profile of interest.

2.3. Kernel density estimation
Kernel density estimation (KDE) is a non-
parametric way to estimate the probability density
of a random variable. The random variable of
interest is the fuel consumption of the vessel in
tonnes/day. A plot of the fuel probability density
functions demonstrates that parametrised models
(such a Gaussian distribution) would not accu-
rately describe the multimodal fuel data. Kernel
density estimates are closely related to histograms
and can have properties such as smoothness or
continuity by using a suitable kernel (see Figure
1). The benefit of using this method to describe the
probability distribution is the ability to separate
the data into bins which reflect different operation
decisions or conditions of travel.

-20 0 20 40 60 80 100 120 140 160

Fuel consumption in tonnes/day
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Fig. 1.: A kernel density estimate constructed us-
ing the data of fuel consumption in tones/day for a
vessel journey, usually defined as a Port A to Port
B journey.

Let (x1, x2, . . . , xn) be independent fuel con-
sumption samples, within a voyage V , drawn from
a distribution with an unknown density f at any
given point x. The shape of the function is es-
timated through a kernel density estimator (see
Eq.(1)) and is described below:
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Fig. 2.: Fuel-speed plot as as clustered and colour
coded according to the KDE of fuel consumption
for vessel journey between two ports. The KDE
with 2 maximas in Figure 1 shows the respective
clustering of data in the middle of this figure (Fuel
consumption vs Speed plot). The 2 clusters plotted
geographically also could indicate different sea
states that resulted in difference in fuel consump-
tions

f̂h(x) =
1

n

n∑
i=1

(x− xi) =
1

nh

n∑
i=1

K
(x− xi)

h

(1)
where K is the kernel and h is a smoothing pa-

rameter called the bandwidth. Kh is is the scaled
kernel and defined as Kh(x) = 1/h · K(x/h).
Both K and h are non-negative functions. The
selection of the bandwidth, h, has to be optimal
in terms of the trade-off between over-smoothing
the kernel density function, which does not yield
extra information or having a distribution that is
overly noisy with too many minima/maxima for
the data to be conclusive. With reference to the op-
timisation of bandwidth, the Silvermans reference
bandwidth is used. Tsitsilonis and Theotokatos
(2018) also utilised the same bandwidth estimator
for ship operation data. The Silvermans reference
bandwidth can be described below:

hI = 0.9[min(
IQR(x)

1.34
), σ)] · n(−1/5) (2)

where IQR is the interquartile range of the
random variable, fuel consumption, x and σ the
standard deviation of the sample. This is a rule-
of-thumb estimator where the underlying goal is
to select a bandwidth that minimises the mean in-
tegrated squared error. Having determined a band-
width and filtered the fuel consumption data into
bins from the KDE, the most frequently occurring
values corresponding to the local maxima is deter-

mined and sorted into operational profile I of the
voyage:

kx = argmax( ˆfhI
(x)) (3)

where kx denotes the bin i.e. the operational
profile it is filtered into.

3. Design of ANN model
In general, an ANN consists of three segments, an
input layer, an output layer and a hidden layer (see
Figure 3). In the input layer, each neuron receives
inputs aj=1, aj=2, ..., aj=n attached with a weight
aj which indicates the connection strength for a
particular input for each connection. Then it mul-
tiplies every input by the corresponding weight of
the neuron connection. At the input layer, there
is also a bias neuron, which can be described
as a type of connection weight with a constant
non-zero value added to the summation of inputs
and corresponding weights. In between the in-
put and output layer, is the hidden layer where
a transfer/activation function creates the output.
The activation functions can be stepwise to reflect
binary outputs or sigmoid to produce a range of
values. Generally there could be more than one
hidden layer. The number of hidden layers and the
number of neurons in each hidden layer need to be
identified and are usually optimised by trial and
error; the initial weights are randomised to start
the training process. During the different trials, the
data was divided into three different subsets: train-
ing, cross validation and testing. Cross validation
set is used as a signal to stop the training and
prevent over training. Determination coefficient
(R2) is used for measuring ANNs performance.

Fig. 3.: General structure of an ANN with five
inputs and one output, and twenty hidden layers

4. Performance of the ANN Model
Fuel consumption of the ship is measured in
tonnes/day and is the output of interest in the
ANN model. The inputs to the ANN model are
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current(kn), wind strength (Beaufort scale), vessel
speed (kn), wind direction (beam, head, tail wind).
The inputs are refined according to literature re-
view such as that of Bialystocki and Konovessis
(2016). The following equations which demon-
strate the mechanism of a neuron are described
below:

The transfer function used is the hyperbolic
tangent function (see Eq. 4) :

f(ui) = tanh(ui) =
1 + e−ui

1− e−ui
(4)

where ui refers to the net inside activity level
of the i-th neuron in the hidden layer and has its
corresponding weights Wij and biases b1j based
on the inputs aj which can be described below
(see Eq. (5)).

ui =

n=5∑
i=1

n=20∑
j=1

Wijaj + b1i (5)

With respect to the five inputs, Eq. (5) can be
written as:
ui =Wi,1 · current+Wi,2 · windstrength

+Wi,3 · vesselspeed
+Wi,4 · winddirection
+Wi,5 · avg.draft+ b1i

(6)

The output from the hidden layer is then used as
inputs to the output layer. Each hidden layer node
ni has its own weights (identified as lw2i), This is
passed through the transfer function as expanded
in the equation below

f(k) = tanh(k) =
1 + e−k

1− e−k
(7)

where ki refers to the net output activity level
of the i-th neuron in the hidden layer and has its
corresponding weights lw2i and biases b2.

k =

n=20∑
i=1

f(ui) · lwi + b2

=
n=20∑
i=1

1 + e−ui

1− e−ui
· lwi + b2

(8)

where n refers to the number of hidden layers
(20, in the case of this paper).

The model yielded an overall R2 value of
0.8800 (see Figure 4). The training set (70% of
the data) obtained a R2 value of 0.9048, while the
validation and testing set (15% of the data respec-
tively) had a value 0.8501 and 0.8411 respectively.

The weights and biases in the ANN are sum-
marised below (see Table 6):

5. Validation and benchmarking
The model is validated through two ways, one, by
looking at the goodness-of-fit for the model and
two, by simulating the results and comparing with
the behaviour according to the situations which
may affect the overall ship resistance and hence
the derived propeller curve. Literature review sug-
gest that many researchers utilising ANN validate
models in terms of the R2 values or other error
indices such as RMSE (Abdel Naby et al., 2008;
Leifsson et al., 2008; Adland et al., 2020). The
goodness of fit (R2) values are deemed to be of
satisfactory value. Similar applications of ANN
to different ship operations demonstrate that ’ac-
ceptable’ R2 values are 0.744 to 0.834 for fuel
prediction for oil tankers (Bal Beikçi et al., 2016).
In addition to using R2 values as a benchmark
between the original data and predicted values, the
results corresponding to the physical phenomenon
can also be used to assess the performance of the
model.

The simulated data (see Figure 5 and 6) demon-
strates that the ANN model can derive results
according to the steepest propeller curve (Profile
1) and the most gentle propeller curve (Profile 2)
in accordance to the different operating conditions
stemming from the sea-state and thus the overall
resistance to the vessel. In Figure 5, Leg 1: Pro-
file 1 refers the sea state conditions that suggests
the highest resistance the ship might face, such
as high current against the vessel, head wind of
strength, Beaufort scale 7 (which is considered as
high wind, near gale strength) and at an average
draft of 14 m. The histograms (see Figure 7) show
that the current, wind strength and associated draft
from cargo load experienced is in the upper end
of the distribution of sea state conditions of the
vessel experience. Leg 1: Profile 2, which re-
flects a much gentler propeller curve indicates
that the resistance a ship is experiencing is much
lesser. Current is significantly lesser at almost
zero. While the ship experiences headwind, it is
a Beaufort strength 5, it is 2 states lower and is
considered a ’fresh breeze’ as compared to Leg 1:
Profile 1. In addition, the average draft is at 13
m, implying lesser cargo load. Leg 1: Profile 3
has conditions in between that of Leg 1: Profile
1 and 2. The current against the vessel is lesser at
-0.8 kn, and the average draft is of a lower value
than Leg 1: Profile 1. Wind conditions remain at
headwind and at Beaufort strength 7, similar to
Leg 1: Profile 1. Overall Leg 1: Profile 1 reflects
a scenario where the sea-state conditions suggest
that the ship would experience high resistance,
and Leg 1: Profile 2 reflects a scenario where the
sea-state conditions is more conducive for a lower
ship resistance. Leg 1: Profile 3 refers to a sce-
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Fig. 4.: Plot of the actual and predicted fuel consumption in Leg 1 withing a channel using the ANN
model, broken down into training, validation, test and overall results.

Table 2.: Weights and biases in the ANN. See Eqs (6) & (8)

n Wi1 Wi2 Wi3 Wi4 Wi5 lw b1 b2

1 0.3182 -0.1767 -0.9280 3.959 0.6833 0.156 -3.603 0.0448
2 1.0129 0.8684 -1.7210 3.3834 -2.0642 -0.3224 5.0481
3 -0.7675 1.5010 1.0198 0.6436 -1.8524 0.6949 -0.5875
4 -4.6135 -1.7680 -4.3690 -1.5216 3.1281 0.2176 3.0596
5 -1.0453 -3.0860 -2.4904 -1.5757 3.5233 -0.1618 3.2163
6 -0.5871 -0.3435 -5.6738 3.3350 1.0151 -0.1683 3.0262
7 -0.0034 -0.7860 2.6684 -0.8905 1.1342 0.2061 2.9490
8 -2.2038 -0.6202 0.4561 2.6423 -0.2203 -1.2714 -1.1539
9 0.3652 1.2574 -2.5649 -1.0541 0.9890 -0.1365 -1.6418
10 -3.3971 0.3049 0.7089 -1.1972 0.2492 -0.1810 0.2392
11 -0.7620 -2.8466 -0.5012 0.5669 0.3166 0.3740 -1.9342
12 -3.8127 -1.4858 -1.1629 1.3434 0.9851 0.1149 0.5971
13 -1.7807 -0.2802 0.4893 1.7727 0.0218 1.7326 -0.7216
14 1.6415 -0.8688 -4.6067 -1.0624 -2.6141 0.2545 2.1147
15 2.6458 -2.2624 0.3082 -2.4584 -2.9388 -0.1428 4.3786
16 2.0198 0.1407 -0.3368 1.1250 4.7158 0.4616 2.8408
17 3.6052 1.2295 -0.2614 0.8858 -1.8925 -0.0457 2.6464
18 -1.8330 -2.8262 1.6702 -1.9683 1.6982 -0.2329 -3.6153
19 0.9197 -4.9122 -3.5518 0.2605 3.3848 0.2245 1.7562
20 0.2493 2.6183 0.4218 -2.2200 -4.5869 0.1746 -1.9334

nario in between them. A similar plot to Figure 5
except with fuel-speed power curves plotted from
the simulated results demonstrate that the power
coefficients are in the range of 2.21 to 3.13, which
agree with literature review of container ships by
Wang et al. (2019) and Adland et al. (2020).

It can be observed that the first ANN presented
reflects the environment within rather closed wa-
ters as there is another island that simulates trav-
elling within a channel.

6. Design of decision support system for
improving ship energy efficiency

It is generally understood that most research on
optimising vessel operations attempt to predict or
have snapshots, as accurately as possible, the ship
resistance. The summary of the proposed method
in this paper is attempting to provide snapshots of
the ship resistance under different sea-state condi-
tions. One novelty of this paper is the derivation
of propeller curves (fuel - speed curves in Figure
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Fig. 5.: A plot of the original data demarcated in
black and 3 fuel-speed curves simulated from 3
differing profile. Profile 1 suggests sea-state con-
ditions which will results in higher ship resistance,
while Profile 2 suggest sea-state conditions result-
ing in lower ship resistance. Profile 3 suggests sea
state conditions that are in between that of Profile
1 and 2.
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Fig. 6.: A similar plot to Figure 5 except with fuel-
speed power curves plotted from the simulated
results. The power coefficients are in the range of
2.21 to 3.13, which agree with literature review of
container ships by Wang et al. (2019) and Adland
et al. (2020).

6) through actual data. These propeller curves are
superior to design propeller curves as there are
elements captured that the design propeller curves
do not.

6.1. Impact on optimal speed
Adland et al. (2020) investigated and demon-
strated that the elasticity of fuel consumption of
oil tankers varies across speeds and sea-states. The
article suggests that the ’cubic law’ is only true
near the design speed of vessels and conditions set

out in the speed trial analysis. In the same way that
engine load diagrams have different curves (for
e.g. one may refer to Figure 3.10 of the report by
MAN Energy Solutions (2018)) for recommended
operations or heavy operations, the derived fuel-
speed curves from the telemetry data indicated
that within a vessel leg where the cargo remains
constant, the different sea-state affect the fuel con-
sumption of the vessel.

For a given voyage, the fuel consumption is not
just affected by the speed of the vessel. Figure
5 shows that while travelling at 17 kn, the ves-
sel may consume between 85 tonnes/day to 115
tonnes/day due to the sea-state that affects the
overall ship resistance. If considering the impact
of slows-teaming on CO2 emissions simply based
on design propeller curves, there could be an over-
estimation in the reduction of CO2 emissions.

7. Conclusion
In this paper, a systematic methodology for deriv-
ing vessel and journey specific fuel-speed curve
from ship telemetry data has been carried out.
Kernel densities estimation is used to categorise
operational profiles, and then an ANN is used
to derive the relationship between fuel consumed
and vessel speed, vessel average draft and sea-
state conditions. The method demonstrated that
it was able to deduce fuel-speed curves in close-
sea conditions such as within a channel. The fuel-
speed curves varied according the sea-state thus
highlighting that the different working loads ex-
perienced by the vessel can be captured by the
model. In addition, the model is validated by com-
parable R2 values with other statistical/machine
learning methods, as well as by analysis of the
physical phenomena ( i.e. based on domain knowl-
edge) of the conditions that affect the ship resis-
tance. In summary, the method allowed a more
accurate prediction of fuel consumption, and a
vessel specific understanding of what is consid-
ered optimal speed. It is thus inferred that the
method on analysing telemetry data demonstrates
consistent results, and benefiting the industry with
improved maritime practices or streamlined vessel
operation. This encourages better data collection
practices in the industry which will become a
valuable big data push for the maritime industry.
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