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Introduction: The aim of this review is to describe how various Al-supported applications are used in
head and neck cancer radiotherapy treatment planning, and the impact on dose management in regards
to target volume and nearby organs at risk (OARs).

Methods: Literature searches were conducted in databases and publisher portals Pubmed, Science Direct,
CINAHL, Ovid, and ProQuest to peer reviewed studies published between 2015 and 2021.

Results: Out of 464 potential ones, ten articles covering the topic were selected. The benefit of using deep
learning-based methods to automatically segment OARs is that it makes the process more efficient
producing clinically acceptable OAR doses. In some cases automated treatment planning systems can
outperform traditional systems in dose prediction.

Conclusions: Based on the selected articles, in general Al-based systems produced time savings. Also, Al-
based solutions perform at the same level or better than traditional planning systems considering auto-
segmentation, treatment planning and dose prediction. However, their clinical implementation into
routine standard of care should be carefully validated

Implications to practice: Al has a primary benefit in reducing treatment planning time and improving
plan quality allowing dose reduction to the OARs thereby enhancing patients' quality of life. It has a
secondary benefit of reducing radiation therapists’ time spent annotating thereby saving their time for
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e.g. patient encounters.
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Introduction

Globally, head and neck cancer (HNC) represents the sixth most
common type of cancer and in 2020, nearly a million new cases
were reported.> HNC comprises a diverse group of malignant tu-
mors that develop in the region of the upper aerodigestive tract i.e.
lips, oral cavity, salivary glands, larynx, nasal cavity, paranasal si-
nuses and pharynx.’ Treatment of HNC requires a multimodality
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approach and depends on several factors.*> Along with surgery and
chemotherapy, radiotherapy is one of the most efficient and
frequently used treatments either as a sole treatment method or
combined with other options.*®” It is estimated that around 50% of
all cancer patients are treated with radiation therapy.®

Although radiotherapy is an integral part of HNC cancer treat-
ment, it is often a challenging process and requires multidisci-
plinary approach.” HNC radiotherapy requires high level of
radiation delivered to a relatively small, irregular-shaped and pre-
cisely targeted area.° In addition, this particular area is an
anatomically complex structure containing a large number of or-
gans at risk (OARs). Any damage to these organs as a result of un-
intentional irradiation may lead to many acute and late side effects
such as xerostomia and dysphagia.'! These adverse effects can have
a negative impact on a patient's overall quality of life. However,
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advanced radiotherapy techniques have improved tumor targeting
while sparing adjacent healthy tissue, reduced toxicities and
therefore improved the clinical outcomes of many patients. Tech-
nologies like image-guided radiation therapy (IGRT) and intensity
modulated radiation therapy (IMRT) have improved both target
precision and accuracy. In particular, for tumors located near critical
structures, the deep step gradient dose of IMRT allows a higher rate
of tumor control compared to 2D and 3D RT techniques, without
increasing the toxicity profile.'”

Radiotherapy treatment for HNC is often delivered by a linear
accelerator. The total dose is fractionated over time so that normal
tissue can recover while tumor cells which are more sensitive to
radiation, will be destroyed. Radiation therapy steps can be altered
depending on the disease site, but in general, the following steps
are included: immobilization, radiological imaging (i.e., simula-
tion), treatment planning including target volume and nearby
structures contouring and dose optimisation, plan verification (QA)
and dose delivery.'?

The fields of medical imaging and radiation oncology have
advanced in the last few decades. The improvement in radiotherapy
treatment planning and delivery accuracy can be attributed to the
increase in details of collected data of tumors and their surrounding
structures.”” In addition, new high-precision radiotherapy tech-
niques such as intensity modulated radiotherapy (IMRT) are
currently widely used for head and neck cancer patients and they
have improved the overall accuracy of the treatment. In IMRT tech-
nology, multiple precisely shaped fields conform the dose to the
target volumes by means of beamlets in with varying intensities.'>
These sharp dose gradients achieved through the use of VMAT
improve dose conformality and enable the administration of high
radiation doses to the target area while reducing the dose received
by surrounding OARs.” In addition, for advanced treatment delivery
techniques including both Volumetric modulated arc therapy
(VMAT) and IMRT, higher conformal dose distributions with
improved target volume coverage and sparing of normal tissues can
be achieved when compared with the older three-dimensional (3D)
conformal radiotherapy techniques. Moreover, the treatment time
for VMAT is usually shorter than in IMRT.'*!® Treatment planning is a
crucial step in the radiotherapy workflow. HNC radiotherapy IMRT-
treatment planning is based on inverse treatment planning where
predefined dose constraints are determined before the calculations
of beam intensities.'® This demands multiprofessional collaboration
with a high level of clinical expertise to maximize the therapeutic
ratio.”” In addition, it is often a tedious and time consuming task
where several iterations are performed to achieve an optimal radi-
ation dose and distribution to the target volume."”

Radiotherapy and Al-based applications

With the proliferation of development works in artificial intel-
ligence, varying medical fields have seen and benefited from its
impact. Radiomics means the extraction of mineable data from
medical images and it has been applied within oncology to improve
diagnosis, prognosis, and clinical decision support in order to
deliver personalized medicine. The radiomics workflow is multi-
disciplinary, including e.g radiologists and data and imaging sci-
entists. It is a sequential process comprising tumor segmentation,
image preprocessing, feature extraction, model development, and
validation.'® In radiotherapy, Al-based solutions have already been
implemented in clinical practice to some extent in different stages
of radiotherapy workflow (e.g. in target volume and OARs seg-
mentation, treatment planning, radiotherapy delivery and treat-
ment response assessment).'%2%

In particular, machine learning (ML) and its different fields have
been under extensive research. As part of this, deep learning (DL)
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development has focused around target volume and organs at risk
(OAR) delineation. Manual contouring of target volumes and OARs
is widely utilized and persists at present even though it is time
consuming and highly variable due to planner experience and
skills.”!

One solution to reduce the plan quality variations is to automate
or semi-automate the planning process by using knowledge-based
planning solutions (Varian's RapidPlan software is one such com-
mercial vendor). Studies have shown that these solutions signifi-
cantly speed up the treatment planning process of HNC
patients.”>~>* Even though Al-based solutions are now used in
clinical settings, there are still significant challenges with them. For
example, the training process of Al is usually time consuming and
the training results are not robust for certain applications. Addi-
tionally, the ethical and juridical aspects of Al are still relatively
unknown. Despite the challenges, there are still untapped possi-
bilities with Al usage within the field of radiotherapy and it can be
predicted that in the future it will revolutionize cancer treatment
and be a significant part of radiotherapy.'®'° However, more clear
and consistent information is needed about the potentials of Al-
based solutions in treatment planning of HNC radiation therapy.

The aim of this review is to describe how Al-supported appli-
cations are used in the HNC radiotherapy treatment planning, and
what kind of impact they can have on the dose management of the
target volume and nearby OARs.

The following search questions were set:

1. How can artificial intelligence be used in HNC treatment
planning?

2. What are the possibilities of using Al in dose optimization
during the HNC treatment planning process?

Methods
Database search

Literature searches were conducted in five databases and
publisher portals: Pubmed, Science Direct, CINAHL, Ovid, and
ProQuest. The following keywords with different combinations
were used, and they were adapted for each database: “artificial
intelligence OR machine learning OR deep learning AND radio-
therapy OR radiation therapy AND radiation dose AND head and
neck cancer OR HNC”. The keywords “organs-at-risk” and “OAR”
closely related to the topic were omitted from the final search as
they were found to limit search results in excess and therefore
potential studies might have been excluded from the review.
Additional manual search from the reference lists of the final
studies that were included in the review was undertaken to un-
cover all appropriate data on the topic.

The PICO or PICo model that stands for Population, Intervention,
Context, Outcome is recommended to use as a guide to formulate a
clear and meaningful research question as well as to help define
inclusion and exclusion criteria in the search process.”” These
mnemonics regarding the search questions of this review are pre-
sented in Table 1.

Inclusion/exclusion criteria

Inclusion and exclusion criteria were defined according to the
PICO -strategy. Articles were included if they addressed any aspect
of artificial intelligence in relation to dose management in the head
and neck cancer radiotherapy treatment planning. The search was
limited to peer reviewed studies that were published between 2015
and 2021. Since the topic is rapidly evolving, only the studies that
were published in the recent years were considered as relevant. In
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Table 1
The PiCOs in research questions 1 and 2.

The PICo for question 1 The PICO for question 2

Population: head and neck
cancer patients

Intervention: artificial intelligence

Context: radiotherapy treatment
planning

Population: head and neck cancer patients

Intervention: artificial intelligence
Context: radiotherapy treatment planning
Outcomes: dose optimization

addition, other types of evidence besides original research studies
might not have been useful considering the objectives of this re-
view. Only the articles written in the English language were
included in this review.

Study selection

The selection of articles was conducted in three phases. In the
first screening stage the selection (n = 464) was done based on the
title level and any potential duplicates were removed. In the
second stage, articles (n = 68) were read on the abstract level and
relevant studies corresponding to the topic were chosen for the
next phase. A total of 27 articles were read at full text level on the
third phase. After full text evaluation 12 articles were selected.
Furthermore, after data extraction additional two articles were
excluded due to their irrelevance to the topic. Thus, ten articles
were finally included for this scoping review. The manual search
was then performed from the reference lists of the included ar-
ticles but studies that met the inclusion criteria were not
found.Two reviewers independently undertook the study selec-
tion process for filtering the articles. Any disagreement between
reviewers after every screening phase was solved in consensus
through discussion. The search process is presented in the PRISMA
-flowchart in Fig. 1.

Data extraction

The final ten articles that met the inclusion criteria were
documented in a data extraction form. They were tabulated ac-
cording to the Al technique used in the study to make the results
easier to interpret.The following data of each study was
collected: author(s), year of publication, country where study
performed, objective of the study, dataset, used Al -technology,
methods and primary results. Articles were divided into three
categories based on the topics they covered: deep learning/ma-
chine learning based segmentation and delineation, knowledge
based planning/applications and DL/ML-based applications for
dose prediction (Table 2).

Results
Auto-segmentation

Auto-segmentation means any system that uses some form of
Al to automatically segment, contour or delineate the target area
or OARs.?° The benefit of using auto-segmentation, such as a deep
learning-based method to automatically segment OARs, is that it
makes the process more efficient producing clinically acceptable
OAR doses.”’ Chen et al.>® used deep learning-based semantic
segmentation to contour OARs called WBNet, which consists of
three different deep learning models, with UA-net being used
specifically for the HNC area. It was discovered that the WBNet
outperformed three other commercially available auto-
segmentation models in 21 out of 28 head and neck OARs.® In
the study performed by Alliotta et al.>? the proposed auto-
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Potential papers (N=464)
Pubmed (n=89)

Cinahl (n=6)

Science Direct (n=124)
Ovid (n=176)

Proquest (n=69)

Papers excluded on the title level
and removed duplicates (n=396)

Potential papers (N=68)
Pubmed (n=61)

Cinahl (n=0)

Science Direct (n=7)
Ovid (n=0)

Proquest (n=0)

Papers excluded on the abstract
level (n=41)

Potential papers (N=27)
Pubmed (n=20)

Cinahl (n=0)

Science Direct (n=7)
Ovid (n=0)

Proquest (n=0)

_|Papers excluded on the full text
level (n=15)

Potential papers for review (n=12)
Pubmed (n=9)
Science Direct (n=3)

Papers excluded after review
(n=2)

Final selection of articles (n=10)
Pubmed (n=8)
Science Direct (n=2)

Figure 1. PRISMA-diagram illustrating the search process.

delineation (AD) workflow reduced the number of OARs
requiring manual delineation or review by 33% across ten HNC
patients and up to 63% for individual patients without affecting
any clinically relevant OAR doses. In the study by Thor et al.>°
auto-segmentation of HNC radiation therapy was combined
with automated treatment planning to study the possibility of
introducing new masticatory OARs. The study found out that
automated treatment planning could efficiently incorporate new
structures from DL auto-segmentation. However, the study also
found that the systematic dose differences in the six OARs be-
tween using manual segmentation and using DL segmentation
were small.

Automated treatment planning

Automated treatment planning, on the other hand means, any
technology that uses some form of Al to automatically provide a
treatment plan with the intent to make the planning process more
efficient and at least on the same level as manual treatment plans
when looking at dose levels.>! McIntosh et al.>?> showed that in
some cases, their method outperformed the clinical plan in dose
prediction. In their study automated plans achieved an average of
0.6% higher dose for target coverage, and 2.4% lower dose at the
organs at risk levels evaluated compared with clinical. There was no
statistically significant difference in high-dose conformity between
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Table 2

Summary of selected articles categorized into three different methods *.

Radiography 29 (2023) 496—502

Reference and
country

Objective of the study

Dataset

Technology used

Methods

Main results

Chen et al.”®
China/USA

van Rooij et al.?”

Netherlands

Aliotta et al.>®
USA

Thor et al.>°
USA

Mclntosh et al.*?
Canada

Babier et al.*

Canada

Cornell et al.>*
USA

To develop a DL-based
automatic segmentation
system (WBNet)

that can precisely
delineate all vital OARs
in the entire body.

To study a DL-based auto-
delineation of numerous
OARs in HNC
radiotherapy

treatment planning and
to investigate

geometric and dosimetric
impact.

To develop an approach
that automatically
identifies and contours
low priority OARs
before HNC treatment
planning.

To investigate DL auto-
segmentation of
masticatory structure
OARs combined with
automated treatment
planning in HNC.

To create a fully
automated HNC
treatment planning
pipeline using voxel-
based dose prediction
and dose mimicking.

To develop an automated
knowledge-based
treatment planning
workflow by combining
two KBP prediction
methods

with an inverse
optimization.

To evaluate automated
knowledge-based
treatment plans to
human-driven plans by
comparing dosimetric
quality and plan
variability across multiple
disease sites.

755 CT scans

HNC (320 cases)
Thorax (110 cases)
Abdomen (200 cases)
Pelvis (125 cases)
Training (505 cases)
Test set (250 cases)

DICOM files (157 cases)
Training set (142)
Test set (15)

HNC (10 cases)

Training set (48 cases)
Test set (10 cases)

Training set (54 cases)
Test set (12 cases)

Oropharyngeal cancer
(217 cases)

Prostate (41 cases)

Prostatie fossa (32 cases)

Lung SBRT (36 cases)
HNC (36 cases)

Auto-segmentation
Deep Learning-based

Auto-segmentation
Deep learning-based

Auto-segmentation
Knowledge-based

Auto-segmentation and
Deep learning-based

Automated treatment
planning (dose prediction,
dose mimicking)
Knowledge-based/
Machine learning

Automated treatment
planning
Knowledge-based

Automated treatment
planning
Knowledge-based
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Development and
validation of WBNet using
the training set and test set.
Evaluation of the
delineation quality for each
OAR were calculated with
Dice similarity coefficient
(DSC) and 95th-percentile
Hausdorff distance (95%
HD).

Performance of WBNet was
compared with three AS
algorithms (ABAS,
AnatomyNet, nnU-Net)
Deep learning (DL) model
was trained using a training
set of 142 manual
delineation (MD) cases. Test
set of 15 was used to test
the quality of the DL model
and it was compared to
original MD of these 15
cases.

OARs were delineated using
an AD. OARs that had
estimated clinically
tolerated low doses were
excluded from manual
delineation (MD)/review.
The AD plans were
compared to MD OARs.
Three rounds of plan
optimization was done
(Echo0,Echo1 and Echo2).
DL replaced a set of six
manually segmented OARs
that were optimized with
Echol. Two scenarios were
compared with clinical dose
volume criteria. EchoO vs
Echo1 and Echo1 vs Echo2.
For all patients a treatment
plan was created using
Pinnacle treatment
planning system.

Two KBP methods were
created, bagging query
(BQ) method and
generalized principal
component analysis based
(gPCA) method, to predict
target dose volume
histograms and feasible
OARs. The predictions
resulting from these KBPs
were compared to clinical
DVHs that were put
through an IO pipeline
creating clinical inverse
optimized plans (CIO).
Human generated plans
and KBP generated plans
were put through blind
selection process using
non inferiority framework
testing.

The target and OAR metrics
from the selected plans
were then compared
together.

WBNet outperformed the three
AS-algorithms it was compared
to.

It reduced the delineation time
significantly and performed
well in treatment planning
with clinically acceptable dose
differences in treatment plans.

The performance of the DL
model produced dose
differences that were clinically
acceptable when compared to
manual

delineation.

AD could identify 67 out of 201
OARs as low priority. The AD
plans when comparing to MD
plans were at a clinically
acceptable

level.

Automated treatment planning
could efficiently incorporate
new structures from DL auto-
segmentation. Between the DL
segmentation and manual
segmentation only small
systematic dose differences
were found in the six OARs.
Echo1 provided better normal
tissue sparing

Preliminary results showed
that automated methods can
produce dose distributions
that are comparable to manual
treatment

planning methods.

When comparing the two
methods to clinical

DVHs the BQ method predicted
a lesser dose while the gPCA
method predicted a dose that
was more inline with the
clinical plan. While looking at
the clinical criteria
performance, the most similar
was the CIO following that the
gPCA"prime and after that the
BQ method.

Across all disease sites the KBP
plans were noninferior and in
HN the plans were superior
compared to human-driven
planning.

The KBP also in prostate,
prostatic fossa and HN sites
showed greater OAR sparing
but lesser target homogeneity
compared to the human-driven
plans.

(continued on next page)
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Reference and
country

Objective of the study

Dataset

Technology used

Methods

Main results

Cilla et al.® Italy

Sher et al.>®
USA

Miki et al.>”
Japan/Netherlands

To perform an extensive
plan quality and OARs
sparing evaluation of the
Pinnacle automated
treatment planning
system in HNC
treatments.

To evaluate the benefits
of Al -based decision
support tool (DST) in dose
prediction of the HNC
treatment

planning workflow.

To develop and evaluate
two independent dose
distribution prediction
methods in the HNC

Oropharynx/hypopharynx/

Oral cavity (15 cases)

Training set (276 cases)
Test set of (50 cases)

Oropharynx/hypopharynx
tumor (81 cases)
Test set (10 cases)

Automated treatment
planning
Knowledge-based

Dose prediction
Al/Machine learning-
based

Dose prediction and
distribution
Deep learning-based

Manually generated plans
and automated plans were
compared together using
DVHs and blind

clinical evaluation. Two
aspects of these plans were
compared planning time
and dose accuracy.

A physician created a
custom OAR directive for
the 50 patient test set. After
this the DST estimated

the doses for each OAR (Ai
directive). The results

were compared together.
The same physician
formed a hybrid directive
using the AD.

Dose distribution was done
using a modified filtered
back projection (mFBP) and
a hierarchically

Automated plans generated
less irritation

to healthy tissue and
significantly reduced the

dose to different OARs like the
spinal cord.

Overall the automated plans
created a

better plan quality compared to
manually

generated plans.

Overall the highest reduction
to dose objectives came from
the hybrid directive

following the Ai directive and
then the

physician directive.

Significant differences were
observed when comparing the
two dose prediction methods
to clinical plans.

treatment planning.

densely connected U-net
(HD-Unet).

automated and clinical plans as measured by the conformation
number.>? It is also possible that different methods produce pre-
dictions or plans that have much better OAR sparing while being
too complex when compared to clinical plans and thus being overly
optimistic.>> One such example is through using knowledge based
planning system bagging query (BQ), where more OAR sparing
could be achieved, but the predictions tend to be too overly com-
plex for them to be feasibly implemented in clinical settings.
However, generalized principal component analysis-based (gPCA)
approach can produce more clinically inline predictions that are not
as complex and overly optimistic and more like clinical dose-
volume histograms (DVH).>>

Cornell et al.>* found out in their blind review study that when
comparing knowledge-based planning (KBP) to human planning,
physicians chose the KBP two-thirds of the time over human
planning. The KBP also produced lower doses to critical OARs like
larynx and pharynx. The human-made plans, on the other hand,
were found to produce lower doses to the spinal cord and reduced
target volume hotspots.

Cilla et al.>* found in their study that in dosimetric evaluation of
Elekta VersaHD linac, an automated treatment planning method
produced better results when compared to manually generated
volumetric modulated arc therapy (VMAT) plans. It increased dose
conformity and reduced integral dose by 6—10%. Moreover, overall
planning time was reduced significantly. In the blinded evaluation,
the oncologists considered the automated plans to be better or on
par with manual plans in more than 80% of the cases.

Dose prediction

Dose prediction is anything that uses some form of Al to auto-
matically predict the doses to OARs or the target area in a manner
that helps to optimize the dose or make the radiotherapy process
more efficient.*® The same or superior plan quality can be produced
using two different dose prediction methods in dose distribution
HD-Unet and mFBP in volumetric modulated arc therapy (VMAT).

500

The benefits of using these methods can distinctly be seen in
planning efficiency since the predicted doses do not need trial and
error like the clinical prediction plans do.>®

Sher et al.>® described a hybrid model that combined the use of
Al and human made OAR directive that they called augmented
intelligence. In their study the use of Al only, manual and hybrid
OAR directive were compared. The hybrid model produced the best
overall results in dose objective reductions and provided signifi-
cantly lower (at least 3 Gy less) dose prediction in up to 39% of the
cases.

Discussion

Based on the results of the studies included in this review, it can
be seen that artificial intelligence utilization in head and neck
radiotherapy treatment planning might be useful in some cases.
Many developed Al algorithms have been aimed to facilitate labo-
rious HNC inverse treatment planning. In particular, auto seg-
mentation, dose prediction, automated treatment planning,
supporting clinical decision and modeling results have been under
investigations,'”?? with results showing that Al-based treatment
planning can outperform manual plans in dose prediction.>? Based
on the articles inspected in this review, and from the point of view
of dose optimization, there seems to be a clinical need for feasible
Al-based auto segmentation and automatic treatment planning.
However, at the moment human intervention is still required for
most Al solutions and due to their infancy they still require sig-
nificant time to setup and to teach the systems and check the
results.

Regarding the utilization of auto segmentation using deep
learning, the results showed that utilizing auto delineation of
OARs reduced the variability between plans which sometimes
may be a problem when different structures are delineated
manually. Also, the number of OARs requiring manual delineation
or review were reduced.”® Automated treatment planning could
efficiently incorporate new structures from DL auto-
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segmentation.>® In the studies of this review, auto-segmentation
performed well enough to be implemented in clinical prac-
tices.””?8 However, there can be variations between different
knowledge based planning systems e.g. between bagging query
(BQ) method and generalized principal component analysis based
(gPCA).? Optimal auto-segmentation means that the dose will be
given only to tumour volumes which would result in reduced
amounts of side-effects for the patient. This is very important for
maintaining the quality of life of HNC patients.

Articles of this review>**>>% reported that knowledge based
planning systems generally exhibited improved performance in
OAR sparing compared to manually generated treatment plans.
Still, there can be significant differences between dose prediction
systems.>’” For HNC patients, lower doses to the OAR means lesser
side-effects and improved patient quality of life outcome.>® After
all, with cancer treatment being a field of personalized medicine,
regardless of the actual treatment encounter with the patient, the
human actor role will still remain essential even with the usage of
auto-segmentation in the treatment process.

Limitations

This scoping review included articles with language restriction
(English) from five online databases and publisher databases and
therefore, may not have included all relevant articles, thus poten-
tially resulting in selection bias. The actual reviewers' limited
experience on the scoping review method may also have caused
bias. However, the reviewers were closely supervised and advised
by other authors having wide experience on the method. Following
the scoping review framework, assessment of scientific quality of
articles or risk of bias of the evidence was not performed, therefore
limiting implications for clinical practice*%*!

Conclusions

Use of Al in head and neck cancer radiotherapy treatment
planning and dose optimisation has been studied to a lesser
extent. While the results are diverse, they still generally point at
the fact that Al-based solutions perform at similar levels or even
better when compared to traditional planning systems consid-
ering auto-segmentation, treatment planning or dose prediction.
However, their clinical feasibility still needs to be developed. Al
has a primary benefit in reducing treatment planning time and
improving plan quality allowing dose reduction to the OARs
thereby enhancing patients' quality of life. It has a secondary
benefit of reducing radiation therapists’ physical and cognitive
load thus allowing them to have more bandwidth for other ac-
tivities, e.g. patient encounters.
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